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ON THE PLANE POTENTIAL FLOW PAST A LATTICE OF ARBITRARY AIRFOILS

By I. E. @RFIIcK

SUMMARY

The twodinwwimul incompmmible potential flow pa8t a
lattice of ahfoib of arbirary shape i.einveatigdd ilwretical.ly.
The problem i.8treded by d metkz% of eonfonnu.1mapping
h Lwwral8t41@8,One 8@e correqMndi71#to the mapping of
theframework of the artirary line luttice and another s&.@-
cant @ge conwponding to the Theodimen method for the
mappi~ of the arbitrary single wing profi?e into a circle. A
parttir feaiure in the tluoreiirul treatment ix the epeciul
handling of the regiunaat an injinite d%nce in front of and
behind tti Zattice. .Elcpre8sion.sare givenfor eazlwationof the
velocity and preeeure di.stribtiion at the airfoil bown.dizry.An
WWratwe numeri.cd example h included.

INTRODUCTION

This paper treats the problem of determining the flow pat-
tern, or the velocity and pressure fields, associated with the
uniform flow past an infinite row of symmetrically placed
airfoils of the same shape. This airfoil-lattice problem
occurs in the design of turbine blades, wind-tunnel vanes or
grids, and elsewhere. There is a purely mathematical interest
in the problem that concerns the field of cxmformalmapping
of infinitely connected regions. Analogous two-dimensional
~~lattice” problm OCCUr in the steady flOW of h~t ~d
etectritity.

Considerable ingenuity has been devoted to the airfoil-
Iattice problem, especially in the turbomachine studies in
the German lii%rature and more recently in the British
studies; nevertheless, a survey of the available ht+rature
indicates that nearly all the treatments employed and the
results obtained are of a special or indirect nature which
involves, for example, latti~ of thin lines or approximate
graphical procedures. Recently, however, A. R. Howell in
a British paper of limited circulation has writtan briefly on
the theory of arbitrary airfoils in cascade. Howell applies a
spcoial transformation to an airfoil lattice to convert the
[attice region to a somewhat random, simply connected
region and, with the aid of several stages of ccmformal
mapping, obtains a region about a circle.

The problem of determining the incomprwsible potential
flow past an arbitrary single wing section was studied by
Theodorsen (reference 1), who gave a practical procedure
for its solution. The case of two wing sections, or the
arbitrary biplane, was later treated in reference 2. The
determination of the flow past an inii.nitelattice of airfoils
of the same shape is a problem intermediate in difticnlty in

comparison with the aforementioned ones. The treatnmnt
for resole this problem given in the present report is
similar to that for the arbitrary single wing section but the
calculations are more involved.

The problem will herein be studied by the usual method
of conformal mapping. It is convenient to accomplish the
result in three or four stages: The airfoil lattice is first re-
placed by its skeIeton, or fi-amework of line segments. The
initial mapping function employed transforms the lattice
skeleton into a circle. In the plane of this circle there are
two singular points, known as branch points. These points
have dual signiibnce: They correspond to iniln.iteregions
in front of and behind the lattice of lines, and they enter in
the problem of reducing the lattice region (multiply con-
nected region) to the region of a single body (simply con-
nected region). If now an arbitrary airfoil shape is gen-
erated or given around the framework of linw, then in the
plane of the circle a circular-like contour is generabd around
the original cirole. This oontour may be transformed into
an exact cirole by the well-lmown procedure given in ref-
erence 1 or 3. The original two si=@ficant points are thpn
traced by a transformation due to H. A. S&vmrz. A final
elementary transformation will bring the circle into a stand-
ard circle for which the two characteristic branch points are
symmetrically placed. The region of this circle is considered
the standard region for determiningg the flow pattern.

For illustrative purposes an outline of a procedure for
calculating pressure distributions is included. The method
may be followed without refqeqcg .tQ@theory by readers
tite&3-Gd tiinly in &une&al results. For convenience, a
list of symbols is given in appendix A.

ANALYSIS

Initial transformation for lattice of straight lines.-Con-
sider the transformation (reference 4)

‘l=+Og%+“)
where g, b, and a are real numbers and b>a. Introduce
coordinates # and 6 by means of the relation

#=(@w p)

and let

(3)
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Equation (1) may then be expressed as

[

CoshYo+cosh (y?+?%)
1

h=~ 10g ~gh ~o–COsh (#+w
(4)

If #=0, WCOrdingto equation (2), z’ lies on a circle of
radius a (fig. 1(a)). According to equation (4), fl=zl+iyl
is the logarithm of a real positive function and, consequently,
represents a real function (its principal value) and the infinite

sequmca of values differing from this function ‘by & 2kn-i,

wlmre k is any integer. The transformation illustrated in
figure l(b) is tlmt of an Mnite lattice of unstaggered lines
of gap g in the ~l-plane into the circle of radius a in the
z’-plane. The points z’=b and z’= –b correspond to
infinity in front of and behind the lattice, respectively. The

inverse points &=$ and z’= —$ are inside the circle of

radius a.
In order to introduce stagger, it is convenient to consider

the transformation

where his real. This transformation can be written with the
use of equations (2) and (3) a9

If ~=0, the esprwion withii the brackets is a complex
number of unit magnitude; hence, the lonwrithm is a pure
imcqgirmrynumber plus an intin.ite sequence of numbers
differing by 2n-i. Then ~,=~+iyz reprwents a sequence of
real numbers differing by h and the lattice is one of hori-
zontal lines displwd from each other by h (fig. 1(c)).

The transformation for the general staggered-line lattice
is n combination of equations (~) and (5) ‘-

or

where
gap g=d COS f?

stagger h=d sin P

stagger ratio :=tan B

the parameter d may be called the slant gap (fig. 1(d)),
and ~ the stagger angle.

The geometry of the lattice may be expressed in terms of
the parameters TOand /3 by noting that the chord length
may be obtained from the (singular or critical) values of o
which correspond to the end points of the chord and are

solutions of

result
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‘e ‘quation % =0. This equation gives the

tan O=tanh TOtan p (7a)

or, for later reference,

I
cosh TOCOS ~

cog ‘=~

~o=sinh’yos ins

Q

(7b)

where
Q= (co&’ -y,-Sin’ @}+

Relations (7) may be employed in two ways: (1) When the
parameters -YOand P are given, the relation determines the
two critical values of 0, @land 0,, where the subscripts 1 and
t refer to leading edge and trailing edge, respectively, and
o,=o,+T. (2) When O, or tan 0, and the stagger angle B
are given, tie relation determines the parameter To.
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The chord c may be obtained by putting 0=01 and 19=0,
in equation (6a) and taking the diilerence in abscissasXzand
z,. I?rom equations (4) to (7),

By means of equation (8), the parameter YOcan be pre-
sented directly in terms of given values of the gap-chord
ratio for any stagger ratio. A ~epresentative chart relating
gap-chord ratio, stagger angle, and w is shown in figure 2;
some values are given in table I.
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TABLE L—QAP-GHORII RATIO, PARAMETER 7,, AND CORRESPONDING VALUES OF et FOR VARIOUS STAGGER ANGLES

: TOkkE&&E
LC05
L01

LW319

L02 ;%%
L06
L10

L03ZM

L 15
LWWI

L20
1.@’m

L2S
L13061

LW
1.10400

L36
L18731

L40
L.?3191

L45 H&%
L83

M
;%

L~
L47X8
LK6123

k?
L63114

%.:
2W%H

4.0
244106
3. .aMs

1:8 :E

0.13
.33

i!!
3.14
4.68

$%
;$

lCi61
lL 54
1252
14.m
lh67
16.w
la 10
19.11
2209
24.IQ
27.al
23.CM
29.51

am
.80

R
1:E
17.a5
.m$z
23.’39
%78

M
33.07
37.ZII
40.C@
4246
44.44
4&10
KL44
E-L18

%%
m.co

kwersion of equations (4) to (6),—The initial trandormw
tions may be th&ght of &- mapp& a framework of chords
of an arbitmry lattice into a circle. If a shape is generated
around the chords in the z-’-plane, a contour is generated
around the circle of radius a. This contour, which must
exclude the points z’= —b and z’=6 and must enclose the

points z’= —~ and z’=;> may be considered to be com-

pletely defined by the function x(t)). If a lattice of airfoils
is preassigned, the function x (o) must be found from the given
coordinates of the airfoil shape. In order not to in@rupt
the sequence of main ideas, the details of this problem are
relegated to appendix B, with certain remarks on the practical
achievement of a nedy circular contour.

Transformation of aontour in z’-plane to oircle in z-
plane.—It is assumed now that the circular-like contour
in the z’-plane which corresponds to the airfoil contour of
the lattiw is either given or determined; that is, the function
#(O) is lmown in the boundary expression z’=ae*. By
the procedure of reference 1 or 3, the transformation

.&=&(Z) (9a)
wherc

j(z) =$;=log ; (9b)

and c. are complex coefficients determined by the boundary,
is then employed to transfoma the z’-contour into a circle
z=aA3* ii ihe Z-plane. The transformation (9a) keeps
the regions alike at infinity in the z’- and -planea; that iz,

z=d and %=1 at infinity. The corrqonden~

boundaries is detwnined by the functional equation

+–e=e(+)

J
-1 2r‘Iqf#/)cot+<C1.qY=——
2T o

of the

(lo)

for which a convenient numerical solution has been outlined
in reference 3. The radius of the circle R=ue$u is determined
by the relation

(11)

For consistency, the functional symbol K’(4) is here used to
denote the quantity # expressed-sz a f~ction of += that
~e#J$)l. b reference 3 the notations #(I#J) and 1[0(+)]

.
It is necessary also to trace the correspondence of the

points z’=6 and z’= —b. Let Z=pl correspond to z’=b
and let z= —& correspond to ~= —b. The values PI and
I%may be determined by a relation (due to Schwarz) that
expresses the value of a complex function in terms of an
integral of the real part of the function along a circle. A
simple derivation of the d&red relation is shown in appendix
C. The expression is

log ;=’(z)

(12)

The values of /?, and & may be determined from equation
(12) by an iteration process that converges extremely
rapidly. The process may be described aa follows: In
equation (12), let the zemth approximation to 131be z= ~= b
and let the corresponding value of z’ be written z’= ~’ = bef@),
where j(b) is the evaluation of equation (12) for z= b. It is
actmdly desired, however, to have z’= b but, because

z’=%’= b+%’-b

the initial value of .s’ diffem from the dwired value by
~’—b. Fur~ermore, Z= ~ differs from Z=ISI by approxi-
mately the same amount; hence, reducing % by the quantity
%’—b giVCS

zl=~+b—~’
= b[z—e~(bj]

which may be considered a that approximation to ~1. If it
is desired to check this result or to obtain a second approxim-
ation, the process may be repmted; thus, from equation
(12), tidj(zl) and

Z1’= .#@l)
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Then,
%=ZI+LJ-ZI’

which is a second approximation to /31and, in general, the
nth approximation is

~=~-1+b—~-1’

lt is clear that, should z. correspond to Zm-l,Z.-l’ must cor-
respond to b and the process rmtomaticdly stops. The nu-
merical process is given in appendix C; relatively elemen-
tary steps are involved. In order to dehnine –/%, the
procea is applied with b replaced by –b.

Transformation to standard oircle in w-plane.—In order
to obtain the flow pattern, it is desirable to introduce another
function which transforms the circle in the z-plane into
another circle in the w-plane in such a way that the char-
acteristicpoints Z=BI and z= —A map into w=b and w=—b,
respectively. The region of the circle in the *plane may
be considered the standard region. The desired trans-
formation may be written as (see appendix D)

(13)

(14)

and R=ae% is the radius of the original circle in the z-plane,

~1 is the complex conjugate to I%,and S’ is the radius of the
new circle in the ~plane. The radius S is determined by

S=be-n (15)

where YI is obtained from

(16)

Oomplex velocity potential in w-plane.-Consider the flow
function $2(w)=@+iv, which is defined as

(
t?

w+~ ) ,d–;
Q(w)=–;:

b+w -k log

b-w+’ei” log — –~ 10
> 4* gv~

T
(17)

The flow pattern may be regarded as due to a combination
of singularities,~sinks, sources, and vortices, placed at the

Cr9
points w= &b and w=& ~ as indicated in figure 3. It may

I .9rerqth
,.Vd cos a

.,,.Vd sin a-

s

I
Frowm3.–Flow dnguladtk In siandard t+plarm.

be readily veriiled that the circle of radius S—that is,
w= S&-is part of a streamline and it may further be
observed from figure 3 that the circulation around any

contour which encloses the points w=& ~ and for which

the points w=+ b are exterior points is r (positive if coun-

terclockwise). The parameter a will be interpreted later
m an angle of attack.

The value of the circulation r may be determined by
means of the KuttaJoukowski condition for smooth flow
at the trailing edge of the lattice. Let U.be the value of u
on the boundary circle Seti that corresponds to the tmiling
edge of the lattice. The Kutta-Joukowski condition then
requires that the flow separate at a= UO,or that a stagnation
point exist there.

With ~~= O and w=Se~, the following relation for I’ is

found:

[
I’=-% b sin (ao+a)+~ sin (~O-CI)1 (18)

b’– ~

If S/bis replaced by e-” (equation (15)), equation (18) may
be expressed as

(
.

r.—2Vd =sin CY+Zl
)

Cosa (19)

Expressions for velooity in lattice field.-In order to obtain
the flow pattern in the lattice field &-plane), the component
factors of the following expression are required:

These terms may be obtained from equations (17), (13),
(9), and (6).

It is of particular interest to evaluate equation (20)
explicitly for the regions at Mnity in front of and behind
the lattice and SJEOon the lattice boundary itself. It is
recalled that ~= m corresponds to z’=b, z= PI,w=b and that
~= —co corresponds to z’=—b, z=—~2, w=—b. By com-
bining terms according to equation (20), the (reflected)
inlet-velocity vector is obtained as

(21)
.

and the corresponding expression for the outlet-velocity
vector is

[1~ _==v.@v.

(22)



— .:.—— . .. .——

272 REPORT NO. 788—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

By addition of equations (21) and (22), it becomes clear
that the velocity vector of magnitude V and angle of attack
a+~ with respect ta the z-axis is one-half the vector sum
of the inlet and outlet velocities (fig. 4).

FIGUREL-hdek outle~ and mean vofudtg vectcm and angles of attack.

If the angle of attack of the mean velocity vector with
respect to the z-axis (chord direction) is denoted by
a== a+ /3, the veloci~ components in equations (21)
and (22) are

Vz,=–Vcos az+$sin B

v*,=–vsin Qk+$cos B

TT3=–VCOSa+ sin/3
●

Vn=vsinC&cos B

The conventional angle of attack a is measured with
respect to the normal to the slant line of the lattice. The
components normal to and along the slant line of the lattice,
sometimes referred to as “axial” and “whirl” components,
respectively, are found by rotating all vectors in the zy-plane

by angle P (fig. 4). These components are, for the inlet
velocity,

and, for the outlet

The squares of
velocities are

VNI =—VCOS c’

VLl= V sin CY+2&

velocity,

VN2=— V cos a= VNI

VQ=Veill a–$

the magnitudes of the inlet and outlet

[- ( )1V,’=v’ l+2& sin a+ &d

[ ( n

r
‘~=v’ =2+& “+ m

where r/2Vd may be obtained from equation (19), Observe
that the inlet and outlet speeds are equal, Vl= Vg, when
CZ=OOfor any value of r. The inlet and outlet angles of
attack with respect to the normal to the lattice line are

r
C1’=fm-l ~ a—~

cos a

and the angle through which the stream is turned is

2& COSa
al—a2=tMl-1

()
2 (23)

l–& .

The component factors in equation (20) are now to be
evaluated at the lattice boundary and, aa the boundary
itself is part of a streamline, only the magnitudes of the
factora are of intere9t.

From equations (17) and (19) and with w= Sef”,

(I.Q_2Vd
m –z M&2T:_co62C [~ 71 m CY(cosu–cm ..).

+ Cosh ~, C06 a(fh u–fib uJ] (24)

where the parameter -Y1is deiined in equation (16).
In order to obtain dwldz, it is convenient first to express

equation (13) explicitly in w as

w=b(l+K)z-b(KW%)

O-az+ml+l.%
(25n)

A standard form for the transformation of a circular region
IZI>R into Iwlzsis

Z—6

‘=RsefiPIFZ (26b)
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Compmison of equations (25a) and (26b) makes it clear that
the complex parameter L$and the real parametar x may be
obtained from the following relations:

#y3-K% (26a)

or, as a check relation,

IF(K-l)
~=?mTE (26b)

and
s_ ,fl=::y:
R

or, by equating angles on both sides,

x=arg(I+K)-arg(KPI+&) (27)

From equation (26b), the explicit correspondence of a point
on the circle w=Seti to a point on the circle z=Re* can be
obtained as follows:

Let the complex number 8 be expresed

(28)

as l~letrand let

(29)

where

nz(4)=l-2g cm (d—T)+g

and

Observe that the denominator in equation (28) is the con-
jugrda of equation (29) and is therefore equal to me-f’.
There results for the correspondence of u and @

U=@+ A+2/.l (30)

In particular, if the (trailing-edge) value of d that corre-
sponds to o~as determined by equations (7) is written as

#O=fl ,+E ~,where e, is the value of c(~) at 0=0, from equation

(10), then

uo=&+A+2ti

By differentiation of equation (25ZI),

On the boundary, put z=Re*; then, the magnitude of
equation (31) is

(32)

t-1dz’
The expression for dz on the boundary is obtained from

equation (9) in tm of the functions ~(d) and v(4) of
equation (10) as follows (see reference

%=:(1+”%)

3): ““- ““

(33a)

and, because j(z) on the boundary is

f(z) =sq@-#,+i(e-gfJ)

where

then

EI=IW1-3+(3T (33b)

The last factor of equation (2o) is expressed from equation
(6) on the boundary z’=ue~ as

r

E+ Cos’p cosh’y,(cosh’@-cos’e)
L

1+Sin’peinh’yo(cosh’#-sin’e) –+ sin 2P Sinh 2yo sin 20 ‘*

~=lCOSh 2y0–cosh 2(~+i$l

=[(cosh 27,–cosh 2# COS 20)’+ (aid 2* sin:20)q~

Finally, combining in equation (21) the factors given in
equations (24), (32), (33b), and (34) yields

=ABm + v.
where

(35)

.
A= Coah27:_cos Za [Sinh‘y, sin CY(cosU–cos u,)

+cosh -yI00S @Jl a–sin u,)]

D=[(cosh 2-YO-COSh2# cos 28)’+ (sinh 2# sin 20)q~

[
~= COS’@cosh270(cosh2@-cos’0)

T+sin’/3 sinh’’yo(cosh’@-SiIl’e) –+ sin 2/3Sinh 27, sin 20

An application of equation (36) for the purpose of illus-
trating the various steps involved in a calculation of the
surface velocity and pressure of the airfoil lattice is given in
appendix E and illustrated in figureE5 and 6. For the sake
of comparison, the single-airfoil case is given in figure 7.
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Some special results from equation (36) for a lattioe of
Iines,-lh the case of a lattice of straight lines, the z’-;
z-, and w-planes merge; hence o=+= u and R=i3=a.

I?rom equations (19) and (7) and with a+ ~=%, which is
the angle of attack with respect to the chord,

The lift per unit span on a single member of
given by

L=pVr

(36)

the lattice is

where p is the air density. The lift vector is perpendicular
to the mean velocity vector (&g. 4). This result is general
and not limited to a straighbline lattice. The lift coeffi-
cient is

where r/2Vd is given in equation (36) and c/d can be found
by equation (8).

The local velocity on the surface (equation (35)) becomes

(
N

)
v=V cos~+— sin ~M (38)

where

Cospcose sin~sine
‘- (COSh’ y,:sin’ ~)~+ cogh -yO “ =

~=COSBtie t3inpc09e
Sinh ‘yO — Cosh -yO

In the special cases in which ~=0° and /3=90°, the relations
(36) to (38) are simpler.

For stagger angle /?=OOand with d=g,

&–c~h~o
——

From equation (8),

and

The lift cdiicientj according to equation

tsnh ;
CL=2X — sin%Tc

~

(37), is
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I?or @= O”, therefore, the slope of the lift curve is always less
than 2z. Note that, for large gap, c/g+-O and the lift
coefficient is

CL=2Z sin ~

When the gap g is small compared with the chord c,

C.+:ain%

The local velocity at the surface, by equation (38), is

( )
u=V cos%+tanh7@~sin %.

This result may be compared with that for the single-line
airfoil (7.= m)

( )
v=V cos a=+COt ~ h a.

l?or stagger angle B=90” and with d=h,

r sin a=
2m=So

From equation (8),

Sinh To=cotg

and

L=2PVfh tan $ sin a=

‘m z=UPC’V~ SiUa=
~~

The lift coefficient, according to equation (37) is

‘an ?h0==2= — sin a=m
~h

For 9=90:, therefore, the slope of the lift curve is rdwwys
greater than 2T. The local velocity at the surface is

[
V=v 00s %+coth ‘-)’0cot ; (4S*4

It may be noted in passing that, for C=2 ,lh

a=8 sin Q

as compared with
~=2T sin Q

for the single airfoil.
For the limiting case in which 6 and d approach co, the

transformation (6) becomes

and, with limit ~~b~l and a new variable z“ = z’e-@

l=fl+$

which is the familiar Joukowski transformation. If the
variabl~s # and o (equation (2)) are introduced, the cor-
responding result is exprwaed aa

J-=2(Z Cosh[4+w-/s)l

d
where the limit, as ~o~m, of 2mz cosh To has been put

equal to 1.

LANGLEY MEMORIAL AERONAUTICAL LABORATORY,

NATIONAL ADVISORY COMWIWEE FOR bRONAUTICS,

LANGLEY FIELD, VA., iVovemhr 19, 1949.



APPENDIX A
MAINSYMBOLS

t complex plane of airfoil lattice (z+iy) 9
f-l) [2 complex planes of airfoil lattice for stagger angles h

p=O” and p=90°, respectively (x,+’iy,; %+iYJ v
8 complex plane of circukdike contour (ae~)
z circle of radius B=ae*o in z-plane (u&+) a=

w circle of radius S’=be=l in w-plane (be-yl%)
l=co, z’=b, z=/9,, w=b corresponding points a

~=–~, z’=–b, z=–(%, w=–b corresponding points

a, b reference lengths
70

% ~9

gap-chord parameter (b=aeyo)
stagger angle VI>VI

: lattice spacing, or “slant” gap for any value of p

APPENDIX B
llWERSION OF EQUATIONS(4) TO (6) AND

It is desired ti tid horn a given airfoil lattice in the
~-plane the contour defied by #(d) in the z’-plane. This
problem corresponds to an inversion of equations (4) to (6)
and can be exactly treated for the cases in which ~=0° and
p=90° (equations (4) and (5), respectively) but an iteration
or successive-approximation method is required for equation
(6). Furthermore, although the parametem g md h are
fixed by the geometry of the lattice, a choice exists in the
definition of the chords and the origin of coordinate. This
choice is discussed following equation (J317).

Stagger angle 19=0°.—From equation (3), there is obtained

Cosh(#+ie) =Cosh ‘yI)tanh ; ~1

Putting t,=z,+iyl and denoting the real and
parts of equation ml) by & and q,, ra~pectively,

@l)

imaginary
leads to

. .
2r

Cosh70 sin y ?J

Sinh * Sin 0=?/,= Zr
21T

cosh~xl+cos--yl

The expressions containing z, and y, in equation (B2) are
considered given since these quantities are known from the
coordinates of the dirfoil lattice. If # and 0 are eliminated
i3ucces9ively,

/

lattice spacing, or gap for /3=0°

lattice spacing, or stagger for fl=90°
magnitude of mean of inlet- and outlet-velocity

vectors (fig. 4)
angle of attack with respect to z-rmis of mean

velocity ~ector
angle of attack with respect to normal to skmt line

of lattice of mean velocity vector
inlet and outlet angles of attack with respect to

normal to slant line of lattice, respectively
magnitudes of inlet and outlet velocities, re-

spectively

CEOICEOF COORDlNATR9

(*)+(*J=i ‘“
From equation @3), there result the following expressions,
which serve to define the function 4(0) in terms of the airfoil
coordinates:

ski’e=p+J~ ]

SinN += –p+- jp’+-11: I
(B4)

where

P=; o-h+?)

I For small values of 6, the relation sinh #=& maybe used.

@It is useful for computational purposes to record the real
and imaginary parts of equation (3)

‘,=%(20%$
Yl=& (#J1-#2) I

where

P?= (mall ‘YO+cosh * Cos0)2+ (Sinh + sin 0)2

(EM)
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sin 4~=~ sinh ~ sin o

sin&= -~sinh*sint9

The angles are to be chosen between –U and r, and the
quadrants may be determined by noting also the relations

COS@l=; (cosh Yo+cosh ~ COSO)

cm +2=: (Coshyo–cosh # Cose)

Stagger angle fl=90°.-From equation (5), there is
obtained

ainh (++dl)=sinh 70 b f ra , @6)

WMI tz=%+iy, and the real and imaginary parts of equation
(B6) denoted by & and m, respectively,

Sillhyotiy%
Sinh + MS O=&=

Cosh2$ yz+cos ~ %

(B7)

sinh%siti~y,
CO& + ti 0=%= 21r

Cosh2$ yg+cos XQ

If: #~and.9are eliminated successively,

(i%)%%)=-’
(&)’+(*+)’=’

038)

~rom equations @8) there result fially the following
expressions, whioh serve to deiine the function *(o) in terms

(B9)

I?or values of Onear +90°, the relation sinh #=*0 may

be used.
It is useful for computational purposes to write the real

and imaginary parts of equation (6)

2%==94(4W’+4)
(B1O)

where
&= (sinh Yo+sinh # COS8)2+ (cosh ~ sin O)z

P,x= (SiUhTo+i.d ~ COS8)9+ (cosh # sin 0)2

sin @4=— :cosh *sine

The angles are to be chosen between —m and r, and the
quadrants may be determined by noting also the relations

cm @Jirlh ‘yO+sinh* Cose)

~g +,=: (sinh ~O–SiIlh# COS6)
P4

Arbitrary stagger angle p and ohoice of ooordinates.—

Because of the lmpscendental nature of equation (6), a

direct inversion expression seems unobtain&ble; however,

the values (~, 0) that correspond to coordinates (z, y) may

‘be obtained without dii%culty by an iterative process. I?or

this purpose and for the purpose of choosing the coordinate

axes, expansions of %, G, yl, and y2 in’powem of # me useful.

The following expansions may be readily verified:

[

cosh ~O+COS8~1S$T Cos ~ 10,
cosh ‘yO—COS6

sinh*70–sin* e

1+@ cosh ToCOS8 co~hz~o_co~ 0)*+ . . . -~11~)

d.
%“g

[
smp 2tan-’*

Cosld‘yO+CIX?e
1+@ainh70sineco5hq~o_ms,oJ2+. . . (Bllb)

2 cosh 70 sin e (B1lC)Y1=: ~s ~ ~ofi~ ~o—cos#

2sinh70cos0
—J&upY2= 2T coshz YO—COS28 $ (B1lCI)

Then
Y= Y1+Y2

=: *F(8) @12)

where

I’(e) =
cosh’yo cos/9ain &-sinh70 ainBcose

coshf 70—cos* 0

If the z-coordinate of the straighkline lattice, which is con-

sidered the skeleton of the airfoil lattice, is denoted by ~,

then % is given by the value of Z=zl+% for ~=0, or

(
.

Xo=~COS~k)g Cosh‘o+*s 0+2 ~* ~ ~-l -0cosh 70— COS 8 Sinh 70)
(-B13)

and

(B14)
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where

G(e)=
cosh ‘yoCOS~ COS6+ SiIlhToSin ~ Sill@

coshz ~o—COd6

_(m*70cos Bshe–ti 70tipcoso)2tiecose
(cosh* 70—cos* 0)2

=F’(11)

ln particular, the leading- rmd trailing-edge points X=ZZ and
X=X1, are determined by the valuea of 0=01 and 0=01 that
may be obtained from equations (7b). Then,

and al denotes the leading edge of the line given by #=0.
A similar expression holds for z,.

From equation ~12), for constsnt #,

=: *Q(O)

In the neighborhood of the leading edge, therefore,

V+QO(L9+ (B16)

I?or % near au there is obtained from equation (3313),

(e–oJ’%:+
rll=%~+(e-el)%;+~ . . .

where the following relations are found to hold:

‘Men, from equation (B14),

X—%t-~— %+;m @@(O

It follows from equwtion (B16) that, for Z=%l,

With this value of yot and equation (B16),

If the total ordinate for both upper and lower sides at
x=~l is denoted by yf,

(B17)

This result leads to a simple and convenient way of choosing
axes,of coordinates in order that #(0) will behave smoothly
at the edges, that is, that the value of # at the leading edge
is approximatdy the mean of the values of ~ at nearby
ordinates on the upper and lower surfaces. For a parabola
the latus rectum, or ordinate through the focus, is four times
the distance from the vertex to the focus. Equation (B17)
states that the end point of the skeleton chord should be
approximately the focus of a parabola at the nose.

The scheme for choice of axes is as follows: Locate a point
F near the leading edge where the ordinate through F is four
times the distance of .3’ from the leading edge. Similarly
locate a point F’ near the trailing edge. The origin of coor-
dinates then bisects the line FF’, which is on the z-axis and
represents the Ch?rd of the skeleton line airfoil 4=0. (To

the order of approximation employed, the aforementioned

choice of axes coincides with that given for the single wing

section in reference 1 or 3.)’

Procedure for finding (i, 0) from (z, y) for arbitrary

stagger angle s.—An iterative procedure is given herein for

hl.ing 4(0) from (z, y) for arbitrary /3,in which the lmowledge

of he case for ~= 0° is employed to help in formulating the

initial approximation. In brief, values of o are obtained for

stagger angle I?= 0° for both the airfoil and its line skeleton.

Values of o are then found for the skeleton, in the case of
stagger angle f?. These functions permit approximate values
of o to be found for the airfoil, for stagger angle 19. Equation
@l12) then enablm approximate values of 4 to be obtained.
These values of (#,0) are then readily checked and improved,
if nece9sary. The steps are a.9follows:

(1) Choose the axes as outlined and express the airfoil
coordinates in percent chord, where the chord for this pur-
pose is the part of the z-axis intercepted by the airfoil.
Denote the coordinates thus obtained by (~, yp). Find
lc=FF’ in percent chord. Find Z1–%l, the distance from the

leading edge to F in percent chord, md denote this value by e.

Obtain the ratio c/d, where c means here FF’ and d is the
spacing between corresponding points on adjacent airfoils of
the lattice. Find conversion factor m by
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(2) Convert coordinate of the airfoil from (~, VP) to

@“%2”%) Mf0u0m’

‘T:=m(’+:-xp)
21r$=myP

(3) Find the parwneter ~, that corresponds to the deter-
mined value of c/d for the given value of I?from graph or by
calculation (equation (8)). Also fid for later use the value
of c/g corresponding to this value of 70for f9= OO.

(4) Consider, for this value of y,, the tyo straighk~e
cases (#=0, 9=0°) and (4=0, ~= f?); associate values of
19=00for 13=0” with vshes O=OPfor the stagger angle 13by
refeming associated values of O to geometrically similar
points of the line9 (equation @13)).

(5) MuItiply coordinates in step (2) by the ratio We

where the chord-gap valuea are from step (3) for ~= 0° and
for B=19. TJsingequation (B4), fid values of Ofor 13=0°.

(6) With the aid of step (4) obtain approximate values of
8dassociated with the values of 0 obtained in step (5). Then
with 0=08, use equation (B12) to obtain an approximate
value of x, where

za F(’O .+=x ~

and the leading- and trailing-edge values of # are obtained
from equfbtion (B15).

(7) Calculate, from equations @5) and (B1O), exact values

0f@2Ty)
a ~ , associated with the initial values of (*, 6) in

step (6) where Z=Z1+% and y=yl+y~.
(8) If, on comparison of the coordinates in step (7) with

the coordinate in step (2), it is deemed necessaW to approxi-
mate (*, 0) more closely for several of the points (x, y), one

d~procedure is the following: An expression for m can

be found from equations (4) to (6) as

&=
gcos p

[
ainh (#+ti) Sinh (#+@)

COShyo+COSh (~+ti) ‘cosh YiJ-COsh (#+@) 1
.

[

Cosh (*+ie) Cosh (*+ie)
)1—~9$~ ~ Sinh yo+sinh (#+q) ‘~ 70–Sinh (#+ie

With the notation of equations @5) and (I31O),this expres-
sion may be written

where

and

=COS19sinh (#+iO) (+8+1+:e-% )
1

—i sin 13cosh (++0) (~ rf%+fi e-’$4
)

[
p=c.os /3 Sinh * Cos 8

(
&+m+)

(
+Cosh # sine ‘h “ smm~ )1—+-

P1

+Sin p [Siuh # sin e (y~+&)

(

sin~ sin44
—tush # COSi? )1—+~/%

[ ( )~=COS ~cosh # sin 0 Cos ‘1 Co;&—+PI

–&h * cos e
( *+*)]

[
—sin p Cosh * Cose

(
Cos& Cos44
~+~

)

(“

.

+Sinh # sin e y~+=-$ )1
The following relation may then be noted:

A#+iAO = ‘6)+iA@0
p+iq (231s)

Let

‘(%?)=(%)O-(%)l

‘(%9=(%)0-(4
where the subscripts O and 1 refer to the coordinate given
in steps (2) and (7), respectively. If the valuea (i, @
obtained in step (6) are used, evaluation of equation 0318)
gives valuea (A+, At9),and (#+A~, 0+A13)represents the next
appro.simation to the desired coordinates. The process in
steps (7) and (8) can be repeated if deemed necessary.
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APPENDIX C

DERIVATION OF EQUATION (12)

The transformation (equation (9)) from the z’- to the
z-plane mny be rmvritten -

log :=j(z)

=$2

where the complex constants % may be defined as

c,=q+ibs

On the boundaries, z’=ae~” and z=ad@*; hence,

log ;=#– %+i(e-d)

nnd

where
R=mti

With 1 considered as a function of @ denoted
coefficients in equation (C2) are obtained as

(cl)

(C2)

by v(I#J),the

(C3)

Substituting equation (C3) in equation (Cl) yields

Y(z)’: p(~) yR: @ (C4)

For ~ <1, the geometric series in equation (Clt) can be

summed and

~(z) ‘+ ~o%) zSR;@$ (C5)

which can immediately be expressed as in equation (12).
For computational purposes, equation (12) may be

separated into real and imaginary parts. Let f(z) =p+@
and z=z+iy (where, for example, in the zeroth approxima-
tion z=b, y= O). Then,

where

N,=; Gos!$+g sin 4–1

I

and the integrations can be conveniently performed by
Simpson’s rule.

APPENDIX D

TRANSFORMATION FROM z-PLANE TO

The linear fractional transformation I
az+b

‘“m

on which the derivation of equation

following well-known properties:

(13) is based, has the

(1)When z traverses a circle C,, w traverses a circle C..
(2) Two points W, and% inverse with respect to a circle

Ou correspond to two points ZIand % inve~e with respect to
the circle O,.

(3) The enharmonic ratio of four points is preserved; tlint
is, if Zl, %, %, and Z4correspond to W) W, % Wd WA)

w-PLANE

(21–24)(%–%) _ (w–@) (%–%)
(21–%) (%–ZJ – (m–m) (W–W4)

For the desired correspondence it is known that four points
iY –@

~=b, %= —b, and their inverse points ~=x> W4=T are

ti correspond to Zl=f?lj %= —A and their inverse points
Rl –P

–— I?roperty (3) yields a relation that maybe
‘=T ‘– B9
used to solve for the radius ~ and that can be expressed by
equations (15) and (16). When the radius of the circle in
the w-plane has been determined, property (3) can again be
used by replacing-say, WZby w and zAby z. This procedure
will yield a result that is equivalent to equation (13).
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APPENDIX E

OUTLINEOF CALCULATIONPROCEDURE

(1) List airfoil-section coordinates in percent chord.
(2) Choose axes (appenh B, paragraph following equ*

%ion@17)).
(3) List stagger angle f? and find ~, and value of c/d for

the skeleton line lattice (table I, fig. 2, and equation (8)).
(4) Find ($, 0) (appendix B).
(5) Find c(~) (equation (10)) by method giv~ iR apPmfi~

of reference 3.
(6) Plot # against 4 where d=e+e Ftid m~~nt #0

(equation (11)) md R=ae~.
(7) Find complex eonstanta

appendix C).
(8) Find CORStflRtiCosh ‘Y,,

tiORS(16), (15), and (14)).
(9) Find complex const.mt

B, and A (equation (12) and

~1, S, and K=kl+tiz (equa-

6= l~]et’ (equation (26)) and

o real constant 1 (equation (27)). Also obtain functions

m(+) and P(+) from equation (29).

(10) Find u and, in particular, uo (equation (30)).

(11) Evaluate factors B, 0, ~, and E (equation (35)).
(1!2) Evaluate factor A in equation (35), fit choosing

the angle of attack a as indicated in the following paragraphs:

The lift coefhient is as in equation (37)

Here c/drefera to the value of z/d at O percent chord minus

x/d at 100 percent chord. By using equation (19) for I’/2Vd,
CLmaybe expressed as

C.=H sin (a+q) (m)

where

and

This relation may be used to find a for any desired value

of CL and it is further noted that a= —q is the angle of zero
lift.

The “ideal” angle of at&k, introduced by Theodorsen, is
defined for a thin section as the angle of attack for which a
stagnation point existi not only at the sharp trailing edge
but *O at the sharp leading edge. For thick airfoils, the
ideal angle of attack. is defined in the same manner (the
pressure difference at the leading edge mnishea) although
the point that is considered the leading-edge point is not
precisely defined. If this point is taken to be the intersection
of the z-axis with the airfoil leading edge, the ideal lift and
ideal angle of attack are found as follows: Let U1be the value
of u corresponding to the leading-edge point. The quantity

H$$in equation (24) (or the factor A in equation (35))

vanishw for U=ul. The relation that gives the value of
the ideal angle of attack a=a~ is then

Sinff cosh w sin al—sin co
— ‘—dim Cos fq—cos UoCos a

and the ideal lift coefficient, from equation @l), is

C&= ‘4: j COS~ (U1–UO)

where

[
>= Cosh ‘y, Cos ;(U1+UO) 1[2+ Sinh71 sin ;(U1+UO) 1

2

(13) The surface velocity ratio u/V is now found from
equation (35) and the (mean) superstream pressure is found
from Bernoulli’s equation as

()
2=1– ; 2
Q

The angle through which the stream is turned may bo found
from equation (23).

A remark may be inserted here regarding an inverm
calculation procedure. Instoad of starting with a given
lattice, it may be convenient to start with given function
~($), (quantity x aa a function of +) and given paramotim
70 and B. Then both the lattice arrangement and tho flow
properties follow uniquely and, in this way, systematic
familiea of lattices can be studied.
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